
Computer Generated String Art

Amanda Manarin
http://g6mandicsc490.wordpress.com/

Artists are constantly using interesting mediums to create innovative art. Kim Kamens i, created a
series of portraits consisting of nails and strings; nails are densely connected in areas of low intensity and
loosely connected in areas of high intensity. The goal of this project was to create a computer program that
can create images similar to Kamen's art. The question is quite simple, given a grayscale image, how can
we simulate the intensity of the image using points and lines?

Before we input our image into the program, we must ensure that the image is a good candidate.
Firstly, the input image should be converted to grayscale. Secondly the image must contain good tonal
values, there should be contrast between areas/features of the image, rather than the image being one
consistent tone. Figure 1 shows an example of a good input image, and a poor input image.

Ideal: The above image has good tonal
values, no background noise.

Poor: This image has contrast
between the sky and the remainder of
the image, but the temple and
remainder of the image does not
contain good tonal values.

Figure 1: Example of good and poor input image choices

Once an ideal image has been selected, the user can being using the StringArt program. Figure 2
shows the main UI of the StringArt application. Input images must be stored within the directory
Models/Images under the directory where StringArt.exe is stored. To load an image into the application, the

http://g6mandicsc490.wordpress.com/

user enters the name of the image, e.g.: “image.png” into the “File Name” box. The user may also set the
desired size of the output image. For instance by entering an image size of 800, the larger dimension of the
input image will assume the length of 800 pixels.

Figure 2: The main UI of the StringArt application

Now the process of converting our image into String Art can begin. Edge detection must be
performed first. This helps identify the feature lines in the image and creates a more appealing result. After
examining Kamens' art, I noticed that nails were placed densely along the feature lines of her images. The
edge detection algorithm used was simply the Sobel algorithmii. The user may specify the threshold for
edge detection, a higher threshold will display more feature lines, while a lower threshold will only display
the most prominent feature lines. The user must also specify the desired distance between nails along the
edges. Once these two parameters have been set, clicking on “Place Edges” will perform the following
steps

1) Perform Sobel edge detection on the input image
2) Create a grayscale image where the background is white and edges are black-gray
3) Create a pure white image, this will be our “output” image
4) Place nails along the edges (“spacing” units apart) in the grayscale image, whose intensity

values are less than the threshold specified by the user. Store the results in the output
image. (Details of the nail placement algorithm will be described shortly)

5) Display the results to the user.

Once the edges have been drawn it is time to place the nails on the remainder of the image. The
user may specify a threshold for nail placement in the box next to “Internal Strings” and under “Threshold”.
This causes the algorithm to only place nails in regions where the intensity is less than threshold. The user
may also specify the spacing of the nails, this causes the algorithm to place nails with even spacing
throughout the image. Initially, I thought that placing nails evenly throughout the image was a valid
approach. Upon examining Kamens' art again, I noticed that nail spacing is not consistent; Nails are
densely placed in low-intensity areas and sparsely placed in high-intensity areas (otherwise known as

stippling). I first used the uniform spacing approach to generate imagery, but later implemented stippling.
The later produced imagery that more closely resembled the input image.

Once the user hits “Place Nails” the program does the following (in the case of even spacing):

1) Using the ANN Library, creates a kdTree where each pixel (with intensity less than
threshold) is a node in the kdTree tree.

2) Create a vector of all the nodes in the kdTree called _nail_positions, shuffle the order of
these nodes.

3) For each node in _nail_positions:
1. If it is not marked for deletion

1. Perform nearest neighbour search with a radius of s units (where s is the spacing
entered by the user)

2. Mark each of the nearest neighbours for deletion
3. Store the current node in a vector _sparse_positions

2. If it is marked for deletion, just skip it and move on to the next node.
 4) Let _nail_positions = sparse_positions

 5) Place a nail on each position in _nail_positions.

In the case of using a stippling approach we need the user to input one more value, this is the “# of
Iterations”. This essentially breaks the images into x layers, where each layer only contains the pixels
whose intensities lie within the range of the layer. For instance, if the user specified threshold is 245 and
the user specifies 3 iterations, then we split the image into 3 layers, where layer 1 contains pixels with
intensities between 0 and 82, layer 2 contains pixels with intensities between 82 and 164, and lastly layer 3
contains pixels with intensities between 165 and 245. For each layer, we create a separate temporary
image, containing the layer's pixels, and we perform the above algorithm on each layer, except we
decrease our search radius (by 1 unit) each time.

The last step in the String Art creation process is to connect the nails. Here we also use the field “#
of Iterations” to determine the number of layers we need to create. In this part of the algorithm, when we
mention layer we consider all pixels below a certain threshold. Using the above 3 layer example, layer 1
would contain all pixels with intensity less than 82, layer 2 contains all pixels with intensities less than 164
and layer 3 contains all pixels with intensity less than 245. The algorithm first starts with the lightest layer,
for instance all pixels with intensity less than 245. All nails within this layer are only allowed 2 connections,
creating the illusion of very high intensity. Then we look at the next layer, and allow all nodes within this
layer to have 3 connections, creating the illusion of a darker intensity. We repeat this process for each
layer, increasing the number of connections allowed per node each time. This works since nails in low-
intensity areas will have many connections creating the illusion of darkness, while nails in high-intensity
areas will have few connections, creating the illusion of lightly shaded areas. The process for connecting
nails is as follows:

1. Start with the lightest layer
2. numCon = 2 (max number of connections allowed per node for current layer)
3. For each layer:

1. Iterate through the nails in _nail_positions
1. If nail n is in the current layer and n's number of connections < numCon

1. grow_string(n, numCon)
2. numCon++ // The number of connections allowed per node increase per layer

grow_string(Nail n, int numCon) // Form a string starting at nail n
1. Perform nearest neighbour search for n (with a radius of 2*spacing to return

many neighbours)
2. For each neighbour m:

1. If m is in the current layer, m's number of connections < numCon and
edge(n,m) does not exist:

1. Create an edge (n,m)
2. Add edge (n,m) to the output image
3. Call grow_string(m) (continue forming a string from nail m).

 2. If m is not in the current layer, break and move on to the next neighbour

This process is mainly a brute force algorithm, to improve run-time, in each layer I only look at
about half of the nails. I observed that once half the nails have been examined, the majority of the current
layer has been explored. However run-time is still extremely long and takes around 5 minutes for the entire
process using uniform nail spacing and 20 minutes using non-uniform nail spacing (tested on a MacBook
Pro with Intel Core 2 Duo 2.2ghz processor, 4GB RAM). A more visual illustration of the process is depicted
in figures 3 and 4

Step 1: Edge Detection Step 2.1: Connect
nails loosely to create a
light shade of gray

Step 2.2: On the next
layer, add more
connections

Step 2.x: Continue
adding more
connections

Step 3: Combine the
layers to get the output
image

Figure 3: Division of Image into layers

Layer 1: Nails have few
connections

Layer 2: Number of
connections are increased

Layer 3: Nails are densely
connected

Figure 4: Illustration of nail connections within layers

Results

Figure 5: Input Image

 Figure 6 depicts the results obtained with uniform and non-uniform
nail placement. Figure 7, displays the image that is created after the user
clicks on “Add Effects” in the UI. A gradient is placed on the background,
and nails are placed at each nail position. Nails (in figure 8) were created in
Maya, one nail was rendered from 6 different angles. Lastly, a blurring effect
is performed on the strings (using Gaussianiii blur) and placed on top of the
gradient (but under the strings and nails) to create the illusion of a shadow.
The goal here was to simulate Kamens' original art.

Nails in this image were uniformly placed Nails in this image were non-uniformly placed, noticed how
this image has good contrast and good tonal values. It is an
overall better representation of the input image.

Figure 6: Example Output Images

Figure 7: The output image with nails, shadow and background gradient (after
clicking “Add Effects”)

Figure 8: The nails used in the output image.

Figure 9: Input #2

 Figure 10 shows the result of our second input image. Many more
(some impressive) examples are available online at
http://g6mandicsc490.wordpress.com/

http://g6mandicsc490.wordpress.com/

Nails in this image are uniformly placed Nails are non-uniformly placed, once again notice the good
tonal values and contrast between areas. This creates a
better representation of the original image – the “BAN DAI”
logo is more readable.

Figure 10: Results from Input Image #2

Limitations/Future Directions

The main limitation right now is processing time. As described above it takes around 5 minutes on
an image of 1000 pixels in width using uniform nail placement, while up to 20 minutes with non-uniform nail
placement. The large jump in processing time is due to the exponential increase in the number of nails,
therefore a more efficient algorithm for connecting nails needs to be devised.

The program does not also handle complex images such as landscapes well. I believe this is
largely do the “layer” approach I am using to connect nails. The layer approach causes some small details
in landscapes (leaves, grass, flowers) to be lost, especially if some of these details get lumped together
into the same layer.

Source

Source code is also available online. StringArt_1.1.zip contains the code that performs non-uniform
nail placement (use at your own risk), while StringArt_1.0.zip is a more stable version and contains the
code that performs uniform nail placement.

i Kim Kamens' Art: http://www.kimkamens.com/Thread-Series.html
ii Sobel Edge Detection: http://www.pages.drexel.edu/~weg22/edge.html
iii Gaussian Blur: http://www.gamedev.net/reference/programming/features/imageproc/page2.asp

http://www.pages.drexel.edu/~weg22/edge.html
http://www.gamedev.net/reference/programming/features/imageproc/page2.asp
http://www.kimkamens.com/Thread-Series.html

